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INTRODUCTION
Bottomland hardwood forests of the southern United States
characteristically support a rich diversity of tree species.  Of
the more than 70 tree species endemic to major and minor
river bottoms, bottomland oaks are often primary compo-
nents of many species-site associations (Putnam and
others 1960).  Though bottomland oaks are often a primary
component of mixed species, bottomland hardwood
stands, regeneration of these desired species can be
problematic.  The problem of obtaining an adequate
stocking of vigorous oak (Quercus spp.) reproduction
following regeneration harvests in southern bottomlands
has been addressed by numerous authors for several
decades (Chambers and others 1987, Hodges and Janzen
1987, Johnson 1975, Nix and others 1985).  Yet, reliable
techniques for securing oak regeneration in bottomlands
are still unavailable.  A stronger understanding of how
environmental factors regulate oak seedling establishment
and growth is clearly needed to develop silvicultural
practices that foster oak regeneration (Hodges and
Gardiner 1993).

Previous research in bottomlands has identified several
environmental factors that potentially contribute to oak
regeneration problems.  For example, flooding is a promi-
nent factor in bottomlands that can limit establishment or
destroy entire cohorts of oak reproduction (Johnson and
Deen 1993, Young and others 1995).  Competition from
other tree or vine species can be severe in bottomlands,
particularly on well drained, productive sites (Gardiner and
Yeiser 1999, Johnson 1975).  Mast depredation may limit
seed tree fecundity, and herbivory often reduces vigor of
established seedlings (Johnson 1981, Lockhart and others
2000).

Though many factors potentially contribute to poorly
stocked oak regeneration pools in bottomlands, some
problems are likely linked to light availability.  This may be
realized through the observations that oak seedlings are
generally intolerant of shade, and light availability in the
understory of mature bottomland hardwood forests is
generally low (Hodges and Gardiner 1993, Jenkins and
Chambers 1989).  Recent research has established the
importance of sufficient light availability to development of
vigorous cherrybark oak (Quercus pagoda Rafinesque)
reproduction (Gardiner and Hodges 1998).  And, silvicul-
tural practices which increase understory light availability
can be applied to improve size and vigor of cherrybark oak
reproduction (Lockhart and others 2000).  Though these
findings are promising, much remains to be learned about
the basic functioning of oak seedlings relative to their light
environment.  This experiment was initiated to study the
effects of light availability on the photosynthetic light
response of seedlings of three bottomland oak species.
Additionally, leaf morphology was examined to describe
potential changes in functional processes relative to
structural acclimation.

METHODS
The experiment was conducted during the 1993 growing
season at the Mississippi State University, Blackjack
Research Farm located near Starkville, MS (33° 26' N
Latitude, 88° 46' W Longitude).  Twenty-four, 1-year-old
dormant seedlings of cherrybark oak, Nuttall oak (Quercus
nuttallii Palmer) and overcup oak (Quercus lyrata Walter)
(72 total seedlings) were transplanted into 18.9-liter pots
filled with potting soil and sand (50:50, volume:volume).
Pots were fertilized with a 14-14-14 (nitrogen-phospho-
rous-potassium) time release, granule (Osmocote,
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Grace-Sierra Horticultural Products company, Milpitas, CA),
and watered as needed to maintain ample soil moisture.
Half of the seedlings were randomly selected and placed in
a shade house (20 percent of full sunlight), while the other
half were grown under full sunlight in an adjacent field.

Measurements of leaf morphology and physiology began in
July after maturation of the second flush of shoot growth.
Leaf morphology was characterized through measure-
ments of blade area and leaf mass per area.  Measure-
ments were collected on 30 randomly selected leaves for
each species and light environment (5 randomly selected
leaves from 6 randomly selected seedlings).  Blade area
(centimeter2) was measured with a digital image analysis
system (Decagon Devices Inc, Pullman, WA, USA).  Leaves
were oven-dried for 48 hours at 70° Celsius, then leaf mass
per area was calculated as blade mass ÷ blade area
(milligrams centimeter-2).

Leaf physiology was characterized by measuring the
photosynthetic light response of four randomly selected
seedlings for each species and light environment.  Seed-
lings were brought into the laboratory where measure-
ments were conducted on a single, fully developed leaf
from the terminal flush.  Net photosynthesis (Pn) (micro-
moles centimeter-2 second-1) of each sample leaf was
recorded at 6 levels of photosynthetic photon flux density
(PPFD) (0, 25, 100, 400, 800, 1600 micromoles meter-2

second-1) with a LCA-3 gas analyzer and Parkinson leaf
cuvette (The Analytical Development Company Ltd, En-
gland).  Pn measurements on each sample leaf began at
the lowest light level and ended with the highest light level.
Particular light levels were produced by filtering light from a
300 watt quartz filament bulb with various configurations of
neutral density filters.  Because of high variation in Pn

observed for overcup oak leaves, two additional seedlings
from each light environment were sampled for this species.

Curves were fit to photosynthetic light response data
according to methods described in Givnish (1988).  The
model used for this procedure is defined in Equation 1.

Pn = [(Pg-sat × PPFD) ÷ (K + PPFD)] - Rd

For Equation 1, Pn is net photosynthesis, Pg-sat is gross
photosynthesis at leaf saturation, PPFD is photosynthetic
photon flux density, K is the PPFD required to achieve half
of Pg-sat, and Rd is the dark respiration rate.  The light
compensation point (LCP) for each leaf was calculated with
Equation 2.

LCP = (-K × Rd) ÷ (Rd - Pg-sat)

Apparent quantum yield (ϕ ) of each leaf was calculated
with the first derivative of Equation 1 with PPFD set at LCP
as presented in Equation 3.

 ϕ = Pg-sat × K ÷ (K2 + 2K × PPFD +
PPFD2)

The effect of light availability on photosynthetic light re-
sponse variables (Pn-sat, LCP, Rd,  , K) and leaf morphology
variables (blade area, leaf mass per area) were analyzed
with analysis of variance procedures according to a
completely random design for each species.  All tests were
conducted at an α of 0.05.

RESULTS AND DISCUSSION

Leaf Morphology
Leaves of all three oak species examined in this study
exhibited morphological acclimation when seedlings were
raised under 20 percent sunlight.  Cherrybark oak showed
the greatest blade area response with a 129 percent
increase on leaves that developed under partial sunlight
(table 1).  Blade area of Nuttall oak increased 103 percent,
while blade area of overcup oak showed a 67 percent
increase.  Observations on blade area increases from this
study illustrate the magnitude of variation in morphological
acclimation expressed by different North American oak
species.  Others have reported blade area increases of 110
percent for bur oak (Quercus macrocarpa Michaux), 108
percent for chinkapin oak (Quercus muehlenbergii Engel-
mann), and 208 percent for coast live oak (Quercus
agrifolia Nee) when these species developed under partial
sunlight (Callaway 1992, Hamerlynck and Knapp 1994).

Table 1—Morphological characteristics (mean ± standard error)a of leaves from three bottomland oak
species raised under full (100 percent) or partial (20 percent) sunlight

____________________________________________________________________
Light Level Cherrybark Oak Nuttall Oak Overcup oak
__________________________________________________________________________________________

-----------------  Blade Area (cm2)  -----------------

Full Sunlight (100 pct) 35.7 ± 1.8 b 25.6 ± 1.4 b 25.2 ± 1.2 b
Partial Sunlight (20 pct) 81.9 ± 4.8 a 52.1 ± 2.4 a 42.1 ± 2.5 a

-----------  Leaf Mass per Area (mg cm-2)  -----------

Full Sunlight (100 pct) 11.9 ± 0.2 a 11.0 ± 0.2 a 9.8 ± 0.2 a

Partial Sunlight (20 pct) 7.0 ± 0.2 b 6.8 ± 0.1 b 6.3 ± 0.1 b

____________________________________________________________________
a Means in a column followed by the same letter are not different at α = 0.05.

(1)

 (2)

(3)
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Coupled with the increase in blade area, all species
showed a reduced leaf mass per area when raised
beneath partial sunlight (table 1).  These reductions in
mass per area ranged from 41 percent for cherrybark oak
to 36 percent for overcup oak.  Reductions in leaf mass per
area probably result from a decrease in leaf thickness that
can be attributed to a decrease in palisade cell stacking, a
decrease in leaf cuticle thickness, and/or a decrease in
epidermal and palisade cell thicknesses (Ashton and
Berlyn 1994, Carpenter and Smith 1981, Jackson 1967).
The range of response in mass per area observed be-
tween bottomland oaks in this study was comparable to
other oak species endemic to the northern United States.
Abrams and Kubiske (1990) reported that leaf mass per
area decreased under low light availability by 35 percent for
northern pin oak (Quercus ellipsoidalis E. J. Hill), 36
percent for northern red oak (Quercus rubra Linnaeus), 43
percent for bur oak and white oak (Quercus alba Linnaeus),
and 56 percent for black oak (Quercus velutina Lamarck).

For many broadleaved tree species, leaves which devel-
oped under low light conditions will usually have enlarged
leaf blades and a lower mass per area than those which
have developed under ample light availability (Abrams and
Kubiske 1990, Jackson 1967, Goulet and Bellefleur 1986).
The three bottomland oaks examined in this experiment
were no exception.  Physiological function of oak seedlings
growing in low light environments may benefit from this

morphological acclimation.  Leaf physiology of oak seed-
lings may be improved by several mechanisms including
increasing the light gathering area of individual leaf blades,
increasing the efficiency of harvesting diffuse sunlight
because chloroplasts are closer to the leaf surface, and
reducing the respiratory demand of leaves per unit area
(Chow and others 1988, Hamerlynck and Knapp 1994, Man
and Lieffers 1997, Kozlowski and others 1991).

Leaf Physiology
Photosynthetic light response curves revealed that acclima-
tion of the photosynthetic mechanism to low light availability
differed between the three bottomland oak species (figure
1, table 2).  Cherrybark oak seedlings which developed
beneath partial sunlight showed a 50 percent reduction in
Pn-sat (table 2).  This is in contrast to Pn-sat rates observed for
Nuttall oak and overcup oak, which did not show a de-
crease when seedlings were raised under partial sunlight.
The reduced photosynthetic capacity observed for
cherrybark oak is consistent with another report on this
species, and observations on other shade intolerant
broadleaved species (Bazzaz and Carlson 1982, Gardiner
and Krauss In Press, Kubiske and Pregitzer 1996).  It is not
known why Nuttall oak and overcup oak behaved differently,
but a light environment effect on overcup oak may have
been obscured by the high variance associated with Pn-sat

for this species (figure 1, table 2).  Photosynthetic capaci-
ties of seedlings receiving full sunlight in this study were

Table 2--Photosynthetic light response variables (mean ± standard error)a for  three
bottomland oak species raised under full (100 percent) or partial (20 percent) sunlight
__________________________________________________________________________________________
Light Level Cherrybark Oak Nuttall Oak Overcup oak
__________________________________________________________________________________________

--------  Net Photosynthesis Rate ( mol m-2 s-1)  --------

Full Sunlight (100 pct) 12.9 ± 1.0 a 10.7 ± 0.7 a 10.5 ± 1.5 a
Partial Sunlight (20 pct) 6.8 ± 0.9 b 9.6 ± 1.2 a 7.5 ± 1.4 a

-------  Light Compensation Point ( mol m-2 s-1)  --------

Full Sunlight (100 pct) 18.3 ± 1.6 a 18.2 ± 3.4 a 22.9 ± 2.1 a
Partial Sunlight (20 pct) 9.8 ± 2.3 b  11.3 ± 0.7 a 7.1 ± 1.1 b

---------  Dark Respiration Rate ( mol m-2 s-1)  ---------

Full Sunlight (100 pct) 0.9 ± 0.06 a 0.8 ± 0.14 a 0.9 ± 0.16 a
Partial Sunlight (20 pct) 0.4 ± 0.15 b 0.6 ± 0.16 a 0.4 ± 0.08 b

---------------  Apparent Quantum Yield  ---------------

Full Sunlight (100 pct) 0.05 ± 0.006 a 0.04 ± 0.003 a 0.04 ± 0.006 b
Partial Sunlight (20 pct) 0.04 ± 0.005 a 0.05 ± 0.011 a 0.06 ± 0.004 a

----------  Saturation Constant ( mol m-2 s-1)  ----------

Full Sunlight (100 pct) 319 ± 57 a 279 ± 53 a 319 ± 12 a
Partial Sunlight (20 pct) 226 ± 75 a 235 ± 35 a 142 ± 38b

________________________________________________________________
a Means in a column followed by the same letter are not different at α = 0.05.
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generally higher than reported observations on field-grown
cherrybark oak and Nuttall oak seedlings (Gardiner and
others In Press, Sung and others 1999).

In addition to decreased Pn-sat, cherrybark oak seedlings
raised under partial sunlight exhibited a 55 percent
decrease in Rd (table 2).  Rd of overcup oak was similarly
reduced, but Rd for Nuttall oak was not altered by light
regime (table 2).  A decrease in Rd would be expected to
accompany reductions in leaf mass per area as noted
earlier for these three oak species, because of the reduced
cell volume associated with the lower leaf mass per area
(Hamerlynck and Knapp 1994, McMillen and McClendon
1983).  Results from other studies on cherrybark oak and
Nuttall oak are contradictory to the findings in this study.
Gardiner and Krauss (In Press) reported a decrease in leaf
mass per area for cherrybark oak grown under partial
sunlight, but a concomitant decrease in Rd was not
measured on those seedlings.  And, Nuttall oak grown
beneath an eastern cottonwood (Populus deltoides
Bartram ex Marshall) canopy showed reduced leaf mass
per area with a concomitant decrease in Rd (Gardiner and
others In Press).  These conflicting results indicate that the
relative change in leaf mass per area and other uncon-
trolled environmental factors probably contributed to the
disparate results noted between studies.  For example, leaf
temperature can have a strong effect on Rd, and this
variable likely differed between experiments.  In the work
published by Gardiner and others (In Press) and Gardiner
and Krauss (In Press), leaf cuvette temperature was
controlled during Rd measurements.  Sampling techniques
used in this study were not amenable to controlling cuvette
temperature.

Associated to the reduced Rd, LCP decreased 46 percent
and 69 percent, respectively, for cherrybark oak and overcup
oak leaves raised under partial sunlight (table 2).  Though
of overcup oak increased when seedlings developed under
partial sunlight (figure 1, table 2), light environment did not
alter ϕ of cherrybark oak, nor did it impact LCP or ϕ of
Nuttall oak.  Three other North American oaks exhibited
similar reductions in LCPs when leaves were acclimated to
low light environments (Kubiske and Pregitzer 1996,
Hamerlynck and Knapp 1994).  Results from those studies
confirm the observation that LCPs were lowered primarily
through decreased Rd rather than through an increased ϕ.
However, the higher ϕ observed for overcup oak seedlings
raised under partial sunlight in this study may have lead to
a decreased K, which was not observed for cherrybark oak
or Nuttall oak (table 2).

MANAGEMENT IMPLICATIONS
Though this study does not consider whole-plant response
to light environment, several implications for management
of bottomland oak regeneration may be inferred from leaf-
level response patterns.  First, stand structure of many
mixed hardwood forests restricts availability of sufficient
light to maximize seedling carbon assimilation.  The three
bottomland oaks studied appear to require more than 25 to
30 percent of available sunlight for light saturation require-
ments.  Light availability in the understory of mixed bottom-
land hardwood stands is typically less than 10 percent of
available sunlight (Jenkins and Chambers 1989, Lockhart

Figure 1—Photosynthetic light response of cherrybark oak (a),
Nuttall oak (b) and overcup oak (c) seedlings raised under full
(100 percent) or partial sunlight (20 percent).
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and others 2000).  This study provides physiological
evidence supporting the argument that managers will have
to implement practices that provide stand structures which
improve understory light availability to promote establish-
ment and growth of bottomland oak reproduction (Lockhart
and others 2000).

Secondly, bottomland oak seedlings appear to have
different light requirements.  For example, establishment
and growth of cherrybark oak seedlings might require a
greater level of understory light availability than other
species.  The complex aspect of this implication is that
bottomland oak species are often found on different sites
with different species associations.  So, a treatment that
provides sufficient light for overcup oak in a slough, may not
be adequate for facilitating establishment and growth of
cherrybark oak on a ridge.

Related to the second implication is that the different light
requirements for each species may also directly effect the
length of time seedlings can remain in an understory
before being released.  Species like Nuttall oak or overcup
oak may persist in the reproduction pool of the understory
longer than a species like cherrybark oak.  Indeed,
Johnson (1975) noted that Nuttall oak could persist in the
understory for 15 years if seedlings received about 2 hours
of direct sunlight a day.

A final management implication gathered from this re-
search revolves around the observation that bottomland
oaks differed in their degree of acclimation to light availabil-
ity.  The physiological acclimation observed for cherrybark
oak was in association with relatively large shifts in leaf
morphology.  The implication is that oak seedlings,
particularly cherrybark oak, will have to develop a new leaf
flush to respond to a richer light environment.  It is not
known if a species like Nuttall oak, which shows relatively
little morphological and physiological acclimation to light
availability, can respond quicker to release than a species
like cherrybark oak.  Nevertheless, oak seedlings will
probably require acclimation time before responding to
release.  A similar finding was noted by Gardiner and
Hodges (1998) who considered acclimation of cherrybark
oak seedling morphology under various light levels.  The
slow response to release by cherrybark oak may be seen
in the research of Lockhart and others (2000) and Janzen
and Hodges (1985).  In each of these studies, seedlings
required about 3 years before significant response was
realized.  Regeneration strategies will have to account for
this delayed response.
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